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The 9” tetragonal deformation of the TiO, octahedron in PbTiOJ is monitored as a function of 
temperature by employing a three-dimensional bond polarizability model to analyze the temperature 
dependence of optical second harmonic generation (SHG). The utility of monitoring crystal phase 
transitions in this manner is further demonstrated by combining the results of this analysis with 
previously published pyroelectric measurements to find the spontaneous polarization of this material. 

Introduction 

It has recently been shown (I) that by using 
a three-dimensional polarizability model to 
analyze the temperature dependence of bulk 
second harmonic generation (SHG) coeffi- 
cients, one can obtain detailed information 
on a microscopic scale regarding the nature 
of solid-state phase transitions. The technique 
has now been used successfully to describe 
tetrahedral rotations (2, 3) (SiO,, GeO,) as 
well as trigonal(4) and tetragonal(5) deforma- 
tions of octahedra. Such a model is applied 
here to describe the large (9”) tetragonal 
deformation of the TiO, octahedron in 
PbTiO, as a function of temperature. The 
same tetragonal deformation model is also 
applied to the temperature dependent spon- 
taneous polarization, with quite good results. 

The essence of the theory is the simple co- 
ordinate transformation relation 

dijk = SGil Gjm Gtcn Plan, (1) 

where the 3 x 3 transformation matrix of 
direction cosines (G) takes the microscopic 
bond polarizability /? (bond coordinate sys- 
tem), into the macroscopic crystal polariz- 
ability d (crystal coordinate system), the scale 
factor V being the volume of the unit cell. 
Since G is an orthonormal matrix its nine 

general elements can be expressed in terms of 
the three independent elements (I, m, n) 
which are the direction cosines of the bond with 
respect to the crystal (x, y, z) axes, respectively. 
Furthermore, since many nonlinear co- 
efficients (dsx3 for example) involve only one 
direction cosine (n = cos&) one can readily 
express d as a function of one angle 4 : 

433 = t: Pf” (44. 
s (2) 

Our approach to investigate a phase transition 
is to assume that the major change in d(obs) vs 
temperature is due to a change in some bond 
angle rather than a change in fl, viz., 

afwim wac 
thus simplifying Eq. (2) to 

433 = kf(h). 

(3) 

(4) 

This assumption (Eq. (3)) has been shown to 
be valid in the several cases thus far investi- 
gated (Z-5). In other words, one uses the 
temperature dependence of d to monitor the 
temperature dependence of some bond angle 
$J in a crystal. 

The basic relation, Eq. (l), is exactly an- 
alogous to that used for many years (6) to 
determine linear bond polarizabilities LX’S, 

xij = ;Gil Gj, C(lm. (5) 
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A major difficulty with using Eq. (5) for 
studying phase transitions is that x’s seldom 
change by more than a few percent. On the 
other hand, d’s often change by over an 
order of magnitude. Our microscopic model 
for a bond hyperpolarizability /I is also ex- 
actly analogous to that used previously (6) 
for the linear bond polarizability CI, where the 
bond has cylindrical symmetry (C,,) 

CCL 0 0 
cfij= 0 cd 0 ) 

( i 
(6) 

0 0 0. ” 

having o? = c(rr = aZ2 and a” = ~1~~. Simi- 
larly, 

( 

0 0 0 0 /?I’ 0 
bijk = 0 0 0 p' 0 0 3 (7) 

p' p j3" 0 0 0 1 

where 8' =P311 = 8322 = AZ3 = P232 = AI3 = 
P 131 and p” = p333. Thus using d333, for ex- 
ample, and Eq. (1) one finds 

d333 = ; 2 nfP1' + 3n,( 1 - n:) /3:, (8) 
i 

where the ith bond has a polarizability (7) 
(b “,/?l)i and makes an angle 4i (ni = cos $J 
with the crystal z axis. Likewise for d311 we find 

where 1, and ni are the respective direction 
cosines of the ith bond with respect to the 
crystal x and z axes. The functional form of 
the only other allowed coefficient in 4mm 
symmetry (d13J is identical to that of d311 (Eq. 
9), and Kleinman has shown (8) that in the 
absence of dispersion, d311 = d,,,. This result 
has also been verified experimentally by 
Singh, Remeika, and Potopowicz (9) for 
PbTiO,. 

The well-characterized structure (10) of the 
centric (m3m) high-temperature (T > T, N 
120°C) phase of the isomorphous prototype 
ferroelectric BaTiO, is shown in Fig. 1 where 
we see the 12 coordinate Ba atoms at the center 
of the cube and the six coordinate titanium 
atoms at the cube corners, the oxygen atoms 

FIG. 1. Structure of BaTiO, and PbTiO, in their 
centric (m3m) high temperature phases, showing the 
12 coordinate Ba (Pb) atom at the center of the cube 
and the six coordinate Ti atoms at the cube corners, 
the oxygens being situated at the midpoints of the cube 
edges. 

being situated at the midpoints of the cube 
edges. In the acentric 4mm (polar) room 
temperature (IO) phase (Fig. 2) the oxygens 
have moved down by 84 = 3” (4 = 93”) 
causing a 1.5 % change in the Ba-0 bond 
lengths. 

FIG. 2. Octahedral distribution of oxygens about 
Ti in PbTiOo showing the fourfold axis (C,) and the 
deformation angle I$. The range of q5 is from 98.6 at 
room temperature to 90°C at T> IF, = 490°C. 



OCTAHEDRONDEFORMATIONIN PbTiO, 129 

The structure of the high-temperature phase 
(T > T, N 490”3) for PbTiO, is basically the 
same as that of BaTiO, (Fig. 1). Hence the 
lone pair of valence electrons on the Pb can be 
thought of as occupying the centric 6s level. 
However, in the room temperature structure 
(11) (Fig. 2) it is found that the oxygens have 
moved down by S+ = 9” (4 = 98.6’) causing 
a 11.5 % change in the Pb-0 bond lengths. 
Thus if one uses this bond length anisotropy 
(d,ong -d,,,,,/(d)) to describe the Ba and Pb 
environments one finds that the Pb environ- 
ment is almost an order of magnitude more 
anisotropic than the Ba environment, i.e., 
(25 vs 3%). This distortion, which is larger 
than one might expect, can be thought of as 
arising from the lone pair of electrons on the 
Pb atom, i.e., as the top four oxygens (Fig. 
1) get closer to the lead and become more 
covalent the lead orbitals become rehybri- 
dized as some of the 6S level is used for the 
bonding interaction, In fact, the lead environ- 
ment, as noted by Megaw (22), is remarkably 
similar to that found in lead oxide where the 
four oxygens are situated at the corners of a 
square pyramid with the steriochemically 
active lone pair at the apex giving an sp3d 
hybrid (13). Thus the degree to which the lone 
pair in PbTiO, is involved in bonding (its 
steriochemical activity) is proportional to the 
proximity of the top (short) set of oxygens. 
This situation is quite similar to that found in 
the iodates where one has an sp3 hybridized 
iodine which contains three close oxygens 
and a steriochemically active lone pair. 
Because of the increased steriochemical act- 
ivity of the lead lone pair, we must include 
polarizability contributions from the lead- 
oxygen bonding. By analogy with the approx- 
imation used in the iodate structures (14, 15), 
we use an Sp3d hybrid (in this case, an inverted 
square pyramid with four oxygens at the top 
and a lone pair at the bottom) and where 
P Lp N BPb-o. Using this model of the lead en- 
vironment, and the octahedral Ti-0 distri- 
bution we find from Eqs. (8) and (9) and the 
structural data (If) that 

d333 =;(-o.o13/3:i - 1.753&, 

f  0.030/3;, + 4.544&g. (10) 

d311 = $(-0.292/l& + 0.27@?& 

+0.757/& - 0.727/?;,,). (11) 

Using the (fl “,/?-L)Ti values found previously 
(5) from BaTiO, of (35.5,2.2) x 10m30 esu 
and the nonlinear coefficients (d333,d311) 
for PbTiO, of (+20,-97) x 10m9 esu (9, 16) 
we find from Eqs. (10, 11) (fi”,/31)pb to be 
(5.7,1.2) x 10m30 esu. For consistency we 
have set up our BaTiO, absolute configura- 
tion with the same polarity as PbTiO, so 
thatwith(d,,,,d,,,)for BaTiO, of(-21,-54) x 
10m9 esu we find (p’yfi’)Ti to be (+35.5, 
2.2) x 10e3’ esu. It is worth noting that the 
change in sign of d333 (PbTiO,) relative to 
d,,,(BaTiO,) is caused by the small /?& 
term and its large geometrical factor. Thus we 
can conclude from Eq. (10) that if we had used 
a one-dimensional model (p’= 0) we would 
have lost the largest terms (&,&,) in d333. 
In agreement with microscopic theories 
(17, 18) we find /Y $fiB’(p& = 16P&;&&,= 
S/I&,). Again, because of the importance of 
geometrical factors one is not justified in 
general in neglecting 8:. 

Following Levine’s suggestion, (19) we 
have attempted to replace this phenomeno- 
logical method of obtaining p’s with his 
Bond Charge Theory (20) a one-dimensional 
theory, i.e., (/3’= 0). While this calculation 
gives a reasonable account of the magnitude 
and sign of the individual bond nonlinearities 
(p”‘s), the total nonlinear susceptibility. 
however, is not in agreement with experiment 
vizd& = +6.4 x 10-30esu,d,0i; = -20 x 10p30 
esu. Levine has pointed out (2/), however, 
that this due to an accidental near cancella- 
tion between the various bonds for the parti- 
cular case of PbTiO,. 

In order to describe the temperature dc- 
pendence of the observed d’s in terms of a 
microscopic model we recall (Fig. 1) that the 
Pb-0 bonds are directly coupled to the Ti-0 
bonds since they are both (Pb,Ti) bonded to 
the same oxygens. Hence as the crystal cools 
down from T > T,- 49O”C, the Pb environ- 
ment should deform at the same rate as the Ti 
environment. Since the nonlinear coefficients 
depend directly on this temperature dependent 
deformation (change in 4) the temperature 
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dependence of the Pb and Ti contributions 
must be the same. For simplicity then we take 

d3&T) cc k(35.5 cos"c#(T) 

f  6.6 cos 4(T) sin”4(T)). (I 2) 

d311(T) cc b [35.5 cos 4(T) sin’4(T) 

- 2.2 coscj(T)(2-3 cos'~(T))], (13) 

where 35.5 and 6.6 are p& and p&, respectively. 
Thus using our room temperature conditions, 
4 = 98.6” and (d333,d311) = (+20,-97) x 10m9 
esu and Eqs. (12 and 13) we find 

d333 = (-122 x 10m9 esu) 
(5.4 cos3 4 + cos qt sin2 4). (14) 

d311 = (46.8 x 10m9 esu) 
[16.1 cos I#I sin’ C#I - cos 4(2-3 co? c$)]. 

(15) 

Thus we now have a direct relation between a 
measurable coefficient d333 and/or d311 and the 
angle C#J between the Ti-0 bond and the crystal 
z axis, so that we can monitor C#I as a function of 
temperature by following d vs T. 

A schematic representation of the experi- 
mental apparatus is given in Fig. 3. Details 

OVEN 

TE,.SY - SO*CAR 

/j7R ;=FR 

FIG. 3. Schematic of experimental setup used to 
measure the temperature dependence of the non- 
linear coefficients in PbTi03. 

of the experimental procedure are given 
elsewhere (14), but a brief discussion of the 
method follows. Figure 4 shows a typical plot 
of the observed second harmonic intensity 
(Z2W) versus the translation distance (D) of our 
wedge, the wedge being translated perpendicu- 
lar to the propagation direction of our 1.06- 
,U beam. The wedge angle 0 varied from 1” to 
5” on the several samples. The coherence 
length I, is related to the wedge angle 0 and the 
translation distance D via 

I, = 4-D tan 6. (16) 

Hence from such a plot (Fig. 4) one can readily 
determine both the intensity (Zzw) as well as 
the coherence length 1, for any one particular 
temperature, the relation between these two 
parameters (I,,I’“) and the nonlinear coeffi- 
cient d being 

d cc f (Z2w)1’2. (17) 
e 

Thus from a series of plots such as Fig. 4 

t 
Z 

DISTANCE ALONG X 

FIG. 4. Typical plot of observed second harmonic 
intensity ZzO versus wedge translational distance D 
showing the detail of the crystal coordinate system, 
the wedge configuration and the laser propagation 
direction K. 
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at a series of temperatures one determines the 
temperature dependence of d. Corrections for 
reflection losses (14) were neglected since the 
refractive indices are almost isotropic. Our 
experimental results are shown in Fig. 5. 
Using Eqs. 14 and 15, we find the temperature 
dependence of $ to be that shown in Fig. 6. 
Since the temperature dependence of the d’s 
was a well-behaved function whose observed 
spread was -5 %, we thus assume the uncert- 
ainty in 4 to also be -5 %. 

We were unable to obtain a direct confirma- 
tion of Miller and Nordland’s (16) sign rela- 
tion (L3 x hll < 0) using the wedge tech- 
nique and a $ wave plate (22), because of the 
accidental degeneracy of the two coherence 
lengths (I,, g lsl) and the limited length of 
our wedge. Suffice it to say, however, that 
the intensities of the two interference signals 
were completely consistent with the earlier 
room temperature sign determination (23) 
via the Maker technique (24). 

We have also measured the Pockels or 
linear electrooptic effect and find that the 
appropriate d coefficients, d,“;, and d&, 
have the same sign. These coefficients include 
lattice contributions due to optical phonons 
in addition to the purely electronic SHG 
components. Our results (25) for (d&,d;;J 
are (-170,-380) x 10m9 esu, where the signs 

dijk VS TEMP. FOR PbTiOs 
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FIG. 5. Observed temperature dependence of the 
nonlinear coefficients dJjJ and &, for PbTiO,. 

are related to the spontaneous polarization 
direction, i.e., consistent with the nonlinear 
optical (SHG) signs. These magnitudes are 
much larger than the SHG values for (d333, 
dxll) so the lattice contributions are dominant. 
However, it is of interest that Id;y,I L- Id& 
whereas in other ferroelectrics this inequality 
is reversed (25, 26). This is consistent with the 
positive sign for dss3 found by Miller and 
Nordland (16) since that reduces the magni- 
tude of d&, whereas in other ferroelectrics 
the lattice and SHG portions have the same 
sign. 

Discussion 

It is interesting to note that the analysis and 
measurements of the preceding section can be 
combined with the pyroelectric measurements 
of Remeika and Glass (17) to find the spon- 
taneous polarization P, for PbTiOJ. Specific- 
ally, if 4 - 90” is the measure of crystal aniso- 
tropy it follows that the spontaneous polariz- 
ation P, is given by 

P, = k cos 4. (20) 
A least-squares fit of the pyroelectric data (27) 
and Eq. (20) using SHG determined angles 
4i(T) yields a constant k of 522.0 &/cm2 
and a room temperature spontaneous polariz- 
ation P, of 82.3 &/cm2 which compares 
favorably with the recent experimental value 
of 75 PC/cm’ estimated by Carl (28) as well 
as with the value of 80 &/cm2 which is 
obtained by setting P, proportional to the 
square root of the spontaneous strain (IO), 
i.e., 

P, cf (1 - c/a)“’ (21) 
and then using the tabulated values (10) of 
c/a and the pyroelectric measurements to 
find P,. 

It is also worth noting that if we assume a 
bond additivity model for P, analogous to 
Eq. (11, 

Pi = $2 Gijpj, (22) 

then the contribution of the Ti -+ 0 bonds is 
given by 

P=4$cosq5. (23) 
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so that if we use the result p(Ti --f 0) = 24 
Debye, obtained (5) from BaTiO, we would 
obtain P,(Ti -+ 0) = 76 &/cm2 at room 
temperature, which implies that the Pb + 0 
contribution to P, is very small. 

As a final test of self-consistency, we may use 
the adjusted pyroelectric measurements of 
Fig. 7 with k = 522 ,&/cm* in Eq. (20) to 
give values of 4(T). These are shown in Fig. 
6 to agree well with the SHG determined 
angles. 

I# vs TEMP. FOR PbTiO, 
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FIG. 6. Temperature dependence of the tetragonal 
deformation angle 4 of the TiOd octahedron (Fig. 2) 
in PbTiO, as determined from &(&, d311(& and 
P(d). 

P vs TEMP. FOR PbTi03 
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FIG. 7. Temperature dependence of the spontaneous 
polarization P for PbTiO,. 

In summary we have shown that by using 
a primitive additivity model for both the 
spontaneous polarization and the nonlinear 
coefficients one can obtain detailed informa- 
tion on a microscopic scale regarding the 
nature of the solid state phase transition in 
PbTiO,. 
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